DYMOLA AND MODELICA
Course overview
DAY 1

Dymola and Modelica I

• Introduction Dymola, Modelica, Modelon
• Lecture 1 Overview of Dymola and Physical modeling
 ▪ Workshop 1 Workflow of modeling physical systems in Dymola
• Lecture 2 Simulation and post-processing with Dymola
 ▪ Workshop 2 Simulating and analyzing a physical system
• Lecture 3 Configure system models
 ▪ Workshop 3 Creating a reconfigurable system
DYMOLA AND MODELICA I

- Lecture 4
 - Workshop 4a: Cauer low pass filter using Electric Library
 - Workshop 4b: A moving coil using Magnetic, Electric and Translational mechanics libraries
 - Workshop 4c: Temperature control using Heat transfer Library

- Lecture 5: Understanding equation-based modeling
 - Workshop 5: Defining boundary conditions

- Lecture 6: Trouble shooting and common pitfalls
 - Workshop 6: Common pitfalls
DAY 3

Dymola and Modelica II

- Lecture 7
 - Workshop 7 Implementing a solar collector
- Lecture 8
 - Workshop 8a Lamp logic using StateGraph II
 - Workshop 8b Suspension linkage using MultiBody mechanics
- Lecture 9
 - Workshop 9a Hybrid examples
 - Workshop 9b Hammer impact model
 - Workshop 9c Designing a thermostat valve

Modelica II – Advanced features
Working with the Modelica Standard Library

DAY 3
DAY 4

Dymola and Modelica II

- Lecture 10
 - Workshop 10
 Efficient and reconfigurable modeling
 Creating a system architecture based on templates and interfaces

- Lecture 11
 - Workshop 11
 Model variants and data management
 Creating a data architecture and adaptive parameter interfaces

- Lecture 12
 - Workshop 12a
 Import and Export FMUs in Dymola
 - Workshop 12b
 FMI with Excel
 - Workshop 12c
 FMI with Simulink
DAY 5

Dymola and Modelica II

- Lecture 13 Workflow automation and scripting
 - Workshop 13 Automated sensitivity analysis

- Lecture 14 Dymola code with other tools
 - Workshop 14a Source code and binary export
 - Workshop 14b External functions and external objects
 - Workshop 14c Simulink export

- Lecture 15 Introduction to real-time
 - Workshop 15 Configuring a model for real-time simulation
LECTURE 1
Overview of Dymola and physical modeling
OVERVIEW

• Overview of Dymola
• Documentation
• Creating a new model
• Defining a model with several components
 ▪ Connecting components, connectors
• Setting parameters, dialog boxes
• Interfacing:
 ▪ Connector interface
 ▪ Parameter interface
• Propagating parameters
• Organizing models in packages
• Using check in Dymola
LECTURE 2
Simulation and post-processing
OVERVIEW

• What is an experiment?
• Setting up an experiment
• Working with results
• Analysis of results
• Exporting results
• Selecting solvers
• Initial conditions
• Understanding check, translate, simulate
• Understanding the translation and simulation logs
LECTURE 3

Configure system models
OVERVIEW

• Benefits with hierarchical models
• Structuring
• Configuring hierarchical models
 ▪ Class vs component
 ▪ Navigating
 ▪ Setting and protecting parameters (encapsulation)
 ▪ Changing components
LECTURE 4

Modelica I - Writing Modelica models
OVERVIEW

• Dymola text editor
• Variables
 ▪ Modifying attributes of variables
 ▪ Units and physical quantities, unit checking
• Equations and Algorithms
 ▪ Equations
 ▪ Initial equations
 ▪ Accessing information in connectors
 ▪ Algorithms
• Arrays and matrices
• Inheritance
• Modelica Standard Library
• Multidomain modeling
LECTURE 5

Understanding equation-based modelling
OVERVIEW

• Equation-based components
 ▪ Boundary conditions
 ▪ Initialization
• Defining component boundaries
 ▪ Potential and flow variables
 ▪ Balanced models
 ▪ Over-determined connectors
 ▪ Input/output
 ▪ Stream connectors
• Degrees of freedom in a system
 ▪ State selection and index reduction
 ▪ Identifying degrees of freedom in a system
• Other Modelica classes
LECTURE 6
Troubleshooting and common pitfalls
OVERVIEW

• Development - Best practice
 ▪ Specification
 ▪ Implementation
 ▪ Maintenance
• Troubleshooting
 ▪ Translation problems
 ▪ Simulation problems
• Debugging
 ▪ Nonlinear solver diagnostics
 ▪ Min/Max assertion
 ▪ Logging options (Events, State variables)
 ▪ Online debugging
 ▪ Translation and Advanced Dymola flags
• Common problems
LECTURE 7
Modelica II – Advanced Features
OVERVIEW

• Functions
 ▪ Derivative, advanced derivative definitions
 ▪ Inverse
 ▪ Code generation annotations

• Enumerations

• Data records

• Component arrays

• Expandable connectors
 ▪ Signal bus

• Synchronous Language elements
LECTURE 8

Working with Modelica Standard Library
OVERVIEW

• StateGraph
 ▪ Fundamentals and Usage
 ▪ Modelica.StateGraph vs. Modelica_StateGraph2

• Multibody Mechanics
 ▪ Domain description and basic assumptions
 ▪ Multi-body simulation in Dymola

• Fluid
 ▪ Physical principles
 ▪ Fundamentals and usage

• Media
 ▪ Why and how is Media used?
 ▪ Fundamentals
LECTURE 9

Hybrid modeling
OVERVIEW

• What is a hybrid system?
• What is an event?
• Chattering
• Avoiding events
• Variable structures
 ▪ Parameterized curves
 ▪ State machines
LECTURE 10

Efficient and reconfigurable modeling
OVERVIEW

• Creating reconfigurable models
 ▪ Templates and interfaces
 ▪ Conditional components
 ▪ Arrays of components
• Organizing models and data
 ▪ Libraries
 ▪ Data records
LECTURE 11

Model variants and data management
OVERVIEW

- Modifiers in specific models
- Data records
- Data input blocks
- Replaceable functions
- Reading data from files
- Package constants
- Working with deeper hierarchies
LECTURE 12
FMI Technology
OVERVIEW

• Introduction and background
 ▪ Why FMI?

• What is FMI?
 ▪ The FMI standard
 ▪ What is an FMU?
 ▪ FMI Flavors

• Supported tools and testing

• FMI support in Dymola
 ▪ Options
 ▪ FMU import
 ▪ FMU export
 ▪ FMI workflow

• Using Dymola FMUs with other tools
 ▪ Supported tools
 ▪ Matlab/Simulink
 ▪ Excel
 ▪ Python
LECTURE 13
Workflow automation and scripting
OVERVIEW

• Automated analysis
• Automatic script generation
• Scripts
• Scripting using functions
• Coupling commands to a model
• Example: Generating report data
LECTURE 14

Using the Dymola code in other tools and environments
OVERVIEW

• Binary export
 ▪ Running dymosim.exe
 • Stand alone
 • Compiled with the DDE or OPC options
 • Compiled as DLL with API to C
 ▪ Source code export
• Interface for Java and Python
• External functions in Dymola
• External objects in Dymola
• Dymola-Simulink Interface
LECTURE 15
Introduction to Real-time
OVERVIEW

• Introduction
 ▪ What is real-time simulation?
 ▪ Why real-time?
 ▪ Harder requirements
 • Choosing solver
 • Fast dynamics and instability
 • Non-linear equation systems
 ▪ Analytical Jacobians

• Profiling
 ▪ Execution time analysis
 ▪ Code profiling
 ▪ Overruns
 ▪ Translation log
 • Inline integration
 • Mixed mode integration
 • Achieving real-time simulation